Electrical oscillation with external excitation

Andreas Höschler
Smartsoft GmbH

26 Jun 2015

Contents

1 Damped LC tank with external excitation

1.1 Solving the homogeneous part of the differential equation . . . 1
1.2 Finding a particular solution for the inhomogeneous differential
equation . 4
1.3 Combining the general and the particular solution 6
1.4 Energy Consideration . 8

1 Damped LC tank with external excitation

We consider a resistor, an inductance and a cap in series excited by an external AC signal.

This circuit is mathematically described by

$$
\begin{align*}
U_{G} & =U_{R}+U_{L}+U_{C} \tag{1}\\
U_{0} \sin (\eta t) & =R I+L I^{\prime}+\frac{1}{C} Q \tag{2}\\
Q^{\prime \prime}+\frac{R}{L} Q^{\prime}+\frac{1}{C L} Q & =\frac{U_{0}}{L} \sin (\eta t) \tag{3}
\end{align*}
$$

1.1 Solving the homogeneous part of the differential equation

We solve the homogeneous part of the differential equation LINK first

$$
\begin{equation*}
Q^{\prime \prime}+\frac{R}{L} Q^{\prime}+\frac{1}{C L} Q=0 \tag{4}
\end{equation*}
$$

using the approach

$$
\begin{aligned}
Q & =K e^{i \sigma t} \\
Q^{\prime} & =K i \sigma e^{i \sigma t} \\
Q^{\prime \prime} & =-K \sigma^{2} e^{i \sigma t}
\end{aligned}
$$

Substitution into the differential equation gives

$$
\begin{aligned}
-K \sigma^{2} e^{i \sigma t}+\frac{R}{L} K i \sigma e^{i \sigma t}+\frac{1}{C L} K e^{i \sigma t} & =0 \\
\left(\sigma^{2}-\frac{R}{L} i \sigma-\frac{1}{C L}\right) K e^{i \sigma t} & =0
\end{aligned}
$$

This equation is true for all t only if

$$
\sigma^{2}-\frac{R}{L} i \sigma-\frac{1}{C L}=0
$$

is true. We solve this as follows:

$$
\begin{gathered}
p=-\frac{R}{L} i \\
q=-\frac{1}{C L} \\
\sigma_{1}=-\frac{p}{2}+\sqrt{\left(\frac{p}{2}\right)^{2}-q} \\
\sigma_{2}=-\frac{p}{2}-\sqrt{\left(\frac{p}{2}\right)^{2}-q} \\
\sigma_{1}=-\frac{-\frac{R}{L} i}{2}+\sqrt{\left(\frac{-\frac{R}{L} i}{2}\right)^{2}-\left(-\frac{1}{C L}\right)} \\
\sigma_{1}=\frac{R}{2 L} i+\sqrt{-\left(\frac{R}{2 L}\right)^{2}+\frac{1}{C L}} \\
\sigma_{2}=\frac{R}{2 L} i-\sqrt{-\left(\frac{R}{2 L}\right)^{2}+\frac{1}{C L}}
\end{gathered}
$$

We define

$$
\omega=\sqrt{-\left(\frac{R}{2 L}\right)^{2}+\frac{1}{C L}}
$$

and thus get the following two solutions:

$$
\begin{aligned}
Q & =K e^{i \sigma_{1} t} \\
Q & =K e^{i\left(\frac{R}{2 L} i+\omega\right) t} \\
Q & =K e^{-\frac{R}{2 L} t} e^{i \omega t} \\
Q & =K e^{-\frac{R}{2 L} t}(\cos (\omega t)+i \sin (\omega t))
\end{aligned}
$$

$$
\begin{aligned}
Q & =K e^{i \sigma_{2} t} \\
Q & =K e^{i\left(\frac{R}{2 L} i-\omega\right) t} \\
Q & =K e^{-\frac{R}{2 L} t} e^{-i \omega t} \\
Q & =K e^{-\frac{R}{2 L} t}(\cos (\omega t)-i \sin (\omega t))
\end{aligned}
$$

The general solution for the homogeneous differential equation can therefore be written as

$$
\begin{aligned}
Q & =A e^{-\frac{R}{2 L} t}(\cos (\omega t)+i \sin (\omega t))+B e^{-\frac{R}{2 L} t}(\cos (\omega t)-i \sin (\omega t)) \\
Q & =e^{-\frac{R}{2 L} t}(A \cos (\omega t)+A i \sin (\omega t))+e^{-\frac{R}{2 L} t}(B \cos (\omega t)-B i \sin (\omega t)) \\
Q & =e^{-\frac{R}{2 L} t}(A \cos (\omega t)+A i \sin (\omega t)+B \cos (\omega t)-B i \sin (\omega t)) \\
Q & =e^{-\frac{R}{2 L} t}((A+B) \cos (\omega t)+i(A-B) \sin (\omega t))
\end{aligned}
$$

or after replacing the factors

$$
Q=e^{-\frac{R}{2 L} t}\left(K_{1} \cos (\omega t)+i K_{2} \sin (\omega t)\right)
$$

Since the differential equation is linear we can rewrite this as follows

$$
Q=e^{-\frac{R}{2 L} t}\left(K_{1} \cos (\omega t)+K_{2} \sin (\omega t)\right)
$$

or even shorter like so

$$
\begin{align*}
Q & =e^{-\frac{R}{2 L} t} K \sin (\omega t+\varphi) \tag{5}\\
\omega & =\sqrt{\omega_{0}^{2}-\rho^{2}} \tag{6}\\
\omega_{0}^{2} & =\frac{1}{C L} \tag{7}\\
\rho & =\frac{R}{2 L} \tag{8}
\end{align*}
$$

with the two freely choosable constants K und φ. Please note the dependence of the resonance frequency from the resistance.

$$
\begin{equation*}
f(R)=\frac{1}{2 \pi} \sqrt{-\left(\frac{R}{2 L}\right)^{2}+\frac{1}{C L}} \tag{9}
\end{equation*}
$$

Figure 1: $\mathrm{C}=50 \mathrm{E}-6 ; \mathrm{L}=50 \mathrm{E}-3$

1.2 Finding a particular solution for the inhomogeneous differential equation

We find a particular solution for the inhomogeneous differential equation by trying a suitable approach.

$$
Q^{\prime \prime}+\frac{R}{L} Q^{\prime}+\frac{1}{C L} Q=\frac{U_{0}}{L} \sin (\eta t)
$$

A suitable approach for the above equation is

$$
\begin{aligned}
Q(t) & =D e^{i(\eta t+\delta)} \\
Q^{\prime}(t) & =\operatorname{Di\eta }^{i(\eta t+\delta)} \\
Q^{\prime \prime}(t) & =-\eta^{2} e^{i(\eta t+\delta)}
\end{aligned}
$$

Substituted into the differential equation we get

$$
\begin{aligned}
Q^{\prime \prime}(t)+\frac{R}{L} Q^{\prime}(t)+\frac{1}{C L} Q(t) & =\frac{U_{0}}{L} e^{i \eta t} \\
-D \eta^{2} e^{i(\eta t+\delta)}+\frac{R}{L} D i \eta e^{i(\eta t+\delta)}+\frac{1}{C L} D e^{i(\eta t+\delta)} & =\frac{U_{0}}{L} e^{i \eta t} \\
D e^{i(\eta t+\delta)}\left(\frac{R}{L} i \eta+\frac{1}{C L}-\eta^{2}\right) & =\frac{U_{0}}{L} e^{i \eta t} \\
D e^{i \delta}\left(\frac{R}{L} i \eta+\frac{1}{C L}-\eta^{2}\right) & =\frac{U_{0}}{L}
\end{aligned}
$$

$$
\begin{aligned}
D e^{i \delta} & =\frac{U_{0}}{L\left(\frac{1}{C L}-\eta^{2}+\frac{R}{L} i \eta\right)} \\
D e^{i \delta} & =\frac{U_{0}\left(\frac{1}{C L}-\eta^{2}-\frac{R}{L} i \eta\right)}{L\left(\frac{1}{C L}-\eta^{2}+\frac{R}{L} i \eta\right)\left(\frac{1}{C L}-\eta^{2}-\frac{R}{L} i \eta\right)} \\
D e^{i \delta} & =\frac{U_{0}}{L} \frac{\frac{1}{C L}-\eta^{2}-\frac{R}{L} i \eta}{\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}} \\
D e^{i \delta} & =\frac{U_{0}}{L\left(\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}\right)}\left(\frac{1}{C L}-\eta^{2}-\frac{R}{L} \eta i\right)
\end{aligned}
$$

The value D is the length of the complex number on the right.

$$
\begin{aligned}
D & =\frac{U_{0}}{L\left(\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}\right)} \sqrt{\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}} \\
D & =\frac{U_{0}}{L \sqrt{\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}}}
\end{aligned}
$$

The angle δ is determined as follows:

$$
\begin{gathered}
\tan \delta=\frac{D_{I}}{D_{R}} \\
\sin \delta=\frac{D_{I}}{D} \\
\cos \delta=\frac{D_{R}}{D} \\
D_{R}=\frac{U_{0}\left(\frac{1}{C L}-\eta^{2}\right)}{L\left(\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}\right)} \\
D_{I}=-\frac{U_{0}\left(\frac{R}{L} \eta\right)}{L\left(\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}\right)} \\
D=\frac{U_{0}}{L \sqrt{\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}}} \\
\tan \delta=-\frac{R \eta}{L\left(\frac{1}{C L}-\eta^{2}\right)} \\
\sin \delta=-\frac{R}{L} \eta \\
\cos \delta=\frac{1}{C L}-\eta^{2}
\end{gathered}
$$

$$
Q(t)=D \sin (\eta t+\delta)
$$

1.3 Combining the general and the particular solution

We combine the general solution for the homogeneous differential equation

$$
\begin{aligned}
Q & =e^{-\frac{R}{2 L} t} K \sin (\omega t+\varphi) \\
\omega & =\sqrt{\omega_{0}^{2}-\rho^{2}} \\
\omega_{0} & =\sqrt{\frac{1}{C L}} \\
\rho & =\frac{R}{2 L}
\end{aligned}
$$

and the particular solution of the inhomogeneous differential equation

$$
\begin{aligned}
Q(t) & =D \sin (\eta t+\delta) \\
D & =\frac{U_{0}}{L \sqrt{\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}}} \\
\tan \delta & =-\frac{R \eta}{L\left(\frac{1}{C L}-\eta^{2}\right)}
\end{aligned}
$$

into a total solution by summation:

$$
\begin{equation*}
Q(t)=e^{-\frac{R}{2 L} t} K \sin (\omega t+\varphi)+D \sin (\eta t+\delta) \tag{10}
\end{equation*}
$$

Since the e-Function approaches 0 for large values of t only the particular solution remains after an initiation period.

$$
\begin{equation*}
Q(t)=D \sin (\eta t+\delta) \tag{11}
\end{equation*}
$$

We devide by C to get the voltage in the cap, take first derivatives to get the current and take the second derivative to get the voltage over the coil.

$$
\begin{aligned}
Q(t) & =D \sin (\eta t+\delta) \\
Q^{\prime}(t) & =D \eta \cos (\eta t+\delta) \\
Q^{\prime \prime}(t) & =-D \eta^{2} \sin (\eta t+\delta) \\
U_{C}(t) & =\frac{Q(t)}{C} \\
U_{L}(t) & =L Q^{\prime \prime}(t) \\
I(t) & =Q^{\prime}(t) \\
\delta & =\arctan \left(-\frac{R \eta}{L\left(\frac{1}{C L}-\eta^{2}\right)}\right)
\end{aligned}
$$

Figure 2: $\mathrm{C}=50 \mathrm{E}-6 ; \mathrm{L}=100 \mathrm{E}-3 ; \mathrm{R}=1 ; \mathrm{U} _0=1 ; \eta=400 ;$ Factor $\mathrm{I}(\mathrm{t}): 10.00$

We determine the peak voltage in the cap and the peak current with respect to f (resonance frequency):

$$
\begin{aligned}
Q(t) & =D \sin (\eta t+\delta) \\
U_{s}(f) & =\frac{D}{C} \\
U_{s}(f) & =\frac{U_{0}}{L C \sqrt{\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}}} \\
U_{s}(f) & =\frac{U_{0}}{L C \sqrt{\left(\frac{1}{C L}-(2 \pi f)^{2}\right)^{2}+\left(2 \pi f \frac{R}{L}\right)^{2}}} \\
I(t) & =D \eta \cos (\eta t+\delta) \\
I_{s}(f) & =D \eta \\
I_{s}(f) & =\frac{U_{0}}{L \sqrt{\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}} \eta} \\
I_{s}(f) & =\frac{2 \pi f U_{0}}{L \sqrt{\left(\frac{1}{C L}-(2 \pi f)^{2}\right)^{2}+\left(2 \pi f \frac{R}{L}\right)^{2}}}
\end{aligned}
$$

Figure 3: C=50E-6; L=100E-3; R=1; U_0=1; Factor I_s(f): 10.00

If we excite the series tank with its resonance frequency we get high voltages over the components and a very high current only limited by the resistance of the wire.

1.4 Energy Consideration

The power going into the circuit is given by

$$
\begin{aligned}
P & =\frac{1}{T} \int_{0}^{T} U_{G}(t) I(t) d t \\
P & =\frac{1}{T} \int_{0}^{T} U_{0} \sin (\eta t) D \eta \cos (\eta t+\delta) d t \\
P & =\frac{U_{0} D \eta}{T} \int_{0}^{T} \sin (\eta t) \cos (\eta t+\delta) d t \\
P & =\frac{U_{0} D \eta}{T}\left[-\frac{2 \eta t \sin \delta+\cos (2 \eta t+\delta)}{4 \eta}\right]_{0}^{T} \\
P & =\frac{U_{0} D \eta}{T}\left(-\frac{2 \eta T \sin \delta+\cos (2 \eta T+\delta)}{4 \eta}-\left(-\frac{\cos \delta}{4 \eta}\right)\right) \\
P & =\frac{U_{0} D}{4 T}(\cos \delta-2 \eta T \sin \delta-\cos (2 \eta T+\delta)) \\
\eta & =\frac{2 \pi}{T} \\
T & =\frac{2 \pi}{\eta}
\end{aligned}
$$

$$
P=\frac{U_{0} D}{4 \frac{2 \pi}{\eta}}\left(\cos \delta-2 \eta \frac{2 \pi}{\eta} \sin \delta-\cos \left(2 \eta \frac{2 \pi}{\eta}+\delta\right)\right)
$$

This gets us the following expression for the input power.

$$
\begin{align*}
P_{i n} & =\frac{U_{0} D \eta}{8 \pi}(\cos \delta-4 \pi \sin \delta-\cos (4 \pi+\delta)) \tag{12}\\
\delta & =\arctan \left(-\frac{R \eta}{L\left(\frac{1}{C L}-\eta^{2}\right)}\right) \tag{13}\\
D & =\frac{U_{0}}{L \sqrt{\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}}} \tag{14}
\end{align*}
$$

The circulating power in the circuit is defined as

$$
P_{c i r c}(t)=\frac{d(W(t))}{d t}
$$

with

$$
\begin{gathered}
W(t)=\frac{1}{2} C\left(U_{C}(t)\right)^{2}+\frac{1}{2} L(I(t))^{2} \\
U_{C}(t)=\frac{D}{C} \sin (\eta t+\delta) \\
I(t)=D \eta \cos (\eta t+\delta)
\end{gathered}
$$

$$
\begin{aligned}
P_{\text {circ }}(t) & =\frac{d(W(t))}{d t} \\
P_{\text {circ }}(t) & =\frac{d\left(\frac{1}{2} C\left(U_{C}(t)\right)^{2}+\frac{1}{2} L(I(t))^{2}\right)}{d t} \\
P_{\text {circ }}(t) & =\frac{d\left(\frac{1}{2} C\left(\frac{D}{C} \sin (\eta t+\delta)\right)^{2}+\frac{1}{2} L(D \eta \cos (\eta t+\delta))^{2}\right)}{d t} \\
P_{\text {circ }}(t) & =\frac{1}{2} C \frac{d\left(\left(\frac{D}{C} \sin (\eta t+\delta)\right)^{2}\right)}{d t}+\frac{1}{2} L \frac{d\left((D \eta \cos (\eta t+\delta))^{2}\right)}{d t} \\
P_{\text {circ }}(t) & =C \frac{D}{C}\left(\eta \frac{d t}{d t}+0\right) \cos (\eta t+\delta)\left(\frac{D}{C} \sin (\eta t+\delta)\right)-L D \eta\left(\eta \frac{d t}{d t}+0\right) \sin (\eta t+\delta)(D \eta \cos (\eta t+\delta)) \\
P_{\text {circ }}(t) & =C \frac{D}{C} \eta \cos (\eta t+\delta) \frac{D}{C} \sin (\eta t+\delta)-L D \eta^{2} \sin (\eta t+\delta) D \eta \cos (\eta t+\delta) \\
P_{\text {circ }}(t) & =D \eta \cos (\eta t+\delta) \frac{D}{C} \sin (\eta t+\delta)-L D \eta^{2} \sin (\eta t+\delta) D \eta \cos (\eta t+\delta) \\
P_{\text {circ }}(t) & =D \eta \frac{D}{C} \cos (\eta t+\delta) \sin (\eta t+\delta)-L D \eta^{2} D \eta \sin (\eta t+\delta) \cos (\eta t+\delta) \\
P_{\text {circ }}(t) & =\left(D \eta \frac{D}{C}-L D \eta^{2} D \eta\right) \cos (\eta t+\delta) \sin (\eta t+\delta) \\
P_{\text {circ }}(t) & =D^{2}\left(\eta \frac{1}{C}-L \eta^{2} \eta\right) \cos (\eta t+\delta) \sin (\eta t+\delta) \\
P_{\text {circ }}(t) & =D^{2} \eta\left(\frac{1}{C}-L \eta^{2}\right) \cos (\eta t+\delta) \sin (\eta t+\delta) \\
D & =\frac{U_{0}}{L \sqrt{\left(\frac{1}{C L}-\eta^{2}\right)^{2}+\left(\frac{R}{L} \eta\right)^{2}}} \\
\delta & =\arctan \left(-\frac{R \eta}{L\left(\frac{1}{C L}-\eta^{2}\right)}\right)
\end{aligned}
$$

Figure 4: $\mathrm{C}=50 \mathrm{E}-6 ; \mathrm{L}=50 \mathrm{E}-3 ; \mathrm{R}=0.25 ; U_{0}=12 ; \eta=314$; Factor P_in: 100.00

We have scaled $P_{i n}$ with a factor of 100 in the figure above. The Input power is very small compared to the circulating power for $R=0.250 \mathrm{hm}$.

