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1 Damped LC tank with external excitation

We consider a resistor, an inductance and a cap in series excited by an external
AC signal.
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This circuit is mathematically described by

Us = Ur+UL+Uc (1)
Upsin (nt) = RI—&-LI’—F%Q (2)

w By 1y Uo
Q+7Q+ 50 = me(nt) (3)

1.1 Solving the homogeneous part of the differential equa-
tion

We solve the homogeneous part of the differential equation LINK first
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Q"+ ZQ + ﬁQ =0 (4)
using the approach
Q = Ke“t
Q = Kioe?
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Substitution into the differential equation gives
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We define
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and thus get the following two solutions:
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Q = Keo2t
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Q = Ke #rte it

Q = Ke 3" (cos (wt) — isin (wt))

The general solution for the homogeneous differential equation can therefore be
written as

Q = Ae utt (cos (wt) + isin (wt)) + Be it (cos (wt) — isin (wt))

Q = et (A cos (wt) + Aisin (wt)) + ezt (B cos (wt) — Bisin (wt))
Q = e 2t (Acos (wt) + Aisin (wt) + B cos (wt) — Bisin (wt))

Q = *%(M+BM%WQ+MA B) sin (wt))

or after replacing the factors

Ry
L

Q = e 2" (K cos (wt) + i Ko sin (wt))

Since the differential equation is linear we can rewrite this as follows

Q=c 2t Y (K cos (wt) 4+ Ky sin (wt))

or even shorter like so

Q = e 'K sin(wt+ ) (5)
w = Vel —p (6)
w? = (7)
)= (8)

with the two freely choosable constants K und ¢. Please note the dependence
of the resonance frequency from the resistance.
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Figure 1: C=50E-6; L=50E-3

1.2 Finding a particular solution for the inhomogeneous
differential equation

We find a particular solution for the inhomogeneous differential equation by
trying a suitable approach.

R 1 Uo .
Q"+ EQI + ﬁQ = fosm (nt)

A suitable approach for the above equation is

Q (t) — Dei(nt+5)
Q' (t) = Dmei(nt+6)
Q/l (t) _ _Dn2ei(nt+§)

Substituted into the differential equation we get
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The value D is the length of the complex number on the right.

The angle § is determined as follows:
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Q (t) = Dsin (nt + 0)

1.3 Combining the general and the particular solution

We combine the general solution for the homogeneous differential equation

Q = e #'Ksin (wt + )
w = w?— p?
_ 1
Wy = ﬁ
R
P = ar

and the particular solution of the inhomogeneous differential equation

Q) = Dsin(nt+9)
D = Yo
Ly (& ) + (En)’
Rn
tand = —
L(gp —n?)

into a total solution by summation:

Q (t) = e 3L K sin (wt 4 @) + Dsin (5t + ) (10)

Since the e-Function approaches 0 for large values of ¢ only the particular solu-
tion remains after an initiation period.

Q (t) = Dsin (nt + 9) (11)

We devide by C' to get the voltage in the cap, take first derivatives to get the
current and take the second derivative to get the voltage over the coil.

Q(t) = Dsin(nt+9)
Q' (t) = Dmncos(nt+9)
Q" (t) = —Dn?sin(nt+9)
Uo(t) = QT(t)
Ur(t) = LQ"(t)
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Figure 2: C=50E-6; L=100E-3; R=1; U_0=1; n=400; Factor I(t): 10.00

We determine the peak voltage in the cap and the peak current with respect to
f (resonance frequency):

Q) = Dsin(nt+9)
D
U
Us(f) =
Ley/ (g —n)* + ($0)°
Us (f) = Yo

LC\/(C}L — (27Tf)2)2 + (27rf%)2

I(t) = Dncos(nt+9)
I, (f) = Dn
U
L (f) = n
1/ (dr )" + ()
L) = 2/t
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Figure 3: C=50E-6; L=100E-3; R=1; U_0=1; Factor I_s(f): 10.00

If we excite the series tank with its resonance frequency we get high voltages
over the components and a very high current only limited by the resistance of
the wire.

1.4 Energy Consideration

The power going into the circuit is given by

P = %/Ug(t)l(t) dt

T
1
P = 7 / Uy sin (nt) Dncos (nt + 6) dt
0
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This gets us the following expression for the input power.

P, = U;Dn (cosd — 4msind — cos (47 + 9)) (12)
T
0 = arctan (— 1R77 5 > (13)
(ez —7°)
D = Lo (14)

with

D
Uc(t) = vl sin (nt + 0)
I(t) = Dncos(nt+9)
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D
C=ncos (nt + 5) — sin (nt + §) — LDn*sin (nt + &) D cos (nt + 6)

C
Drcos (nt + 6) g n (nt 4 &) — LDn?sin (nt + ) Dncos (nt + &)
D
Dna cos (nt + ) sin (nt + 8) — LDn* Dysin (nt + &) cos (nt + 6)
(Dng - LD772D77) cos (nt + 0) sin (nt + 6)

1
D? <770 — Ln277> cos (nt + 9) sin (nt + 0)

D%p <é - L772> cos (nt + 9) sin (nt + 9)
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Figure 4: C=50E-6; L=50E-3; R=0.25; Uy=12; n=314; Factor P_in: 100.00

We have scaled P;, with a factor of 100 in the figure above. The Input power
is very small compared to the circulating power for R = 0.250hm.
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