Electrical oscillation with external excitation

Andreas Höschler Smartsoft GmbH

26 Jun 2015

Contents

1	Dar	nped LC tank with external excitation	1
	1.1	Solving the homogeneous part of the differential equation \dots	1
	1.2	Finding a particular solution for the inhomogeneous differential equation	4
	1.3	Combining the general and the particular solution \dots	6
	1 4	Energy Consideration	8

Damped LC tank with external excitation 1

We consider a resistor, an inductance and a cap in series excited by an external AC signal.

This circuit is mathematically described by

$$U_G = U_R + U_L + U_C \tag{1}$$

$$U_0 \sin(\eta t) = RI + LI' + \frac{1}{C}Q \tag{2}$$

$$U_G = U_R + U_L + U_C$$

$$U_0 \sin(\eta t) = RI + LI' + \frac{1}{C}Q$$

$$Q'' + \frac{R}{L}Q' + \frac{1}{CL}Q = \frac{U_0}{L}\sin(\eta t)$$

$$(1)$$

$$(2)$$

1.1 Solving the homogeneous part of the differential equation

We solve the homogeneous part of the differential equation LINK first

$$Q'' + \frac{R}{L}Q' + \frac{1}{CL}Q = 0 (4)$$

using the approach

$$Q = Ke^{i\sigma t}$$

$$Q' = Ki\sigma e^{i\sigma t}$$

$$Q'' = -K\sigma^2 e^{i\sigma t}$$

Substitution into the differential equation gives

$$-K\sigma^{2}e^{i\sigma t} + \frac{R}{L}Ki\sigma e^{i\sigma t} + \frac{1}{CL}Ke^{i\sigma t} = 0$$
$$\left(\sigma^{2} - \frac{R}{L}i\sigma - \frac{1}{CL}\right)Ke^{i\sigma t} = 0$$

This equation is true for all t only if

$$\sigma^2 - \frac{R}{L}i\sigma - \frac{1}{CL} = 0$$

is true. We solve this as follows:

$$p = -\frac{R}{L}i$$

$$q = -\frac{1}{CL}$$

$$\sigma_1 = -\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

$$\sigma_2 = -\frac{p}{2} - \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

$$\sigma_{1} = -\frac{-\frac{R}{L}i}{2} + \sqrt{\left(\frac{-\frac{R}{L}i}{2}\right)^{2} - \left(-\frac{1}{CL}\right)}$$

$$\sigma_{1} = \frac{R}{2L}i + \sqrt{-\left(\frac{R}{2L}\right)^{2} + \frac{1}{CL}}$$

$$\sigma_{2} = \frac{R}{2L}i - \sqrt{-\left(\frac{R}{2L}\right)^{2} + \frac{1}{CL}}$$

We define

$$\omega = \sqrt{-{\left(\frac{R}{2L}\right)}^2 + \frac{1}{CL}}$$

and thus get the following two solutions:

$$\begin{array}{rcl} Q & = & Ke^{i\sigma_1t} \\ Q & = & Ke^{i\left(\frac{R}{2L}i+\omega\right)t} \\ Q & = & Ke^{-\frac{R}{2L}t}e^{i\omega t} \\ Q & = & Ke^{-\frac{R}{2L}t}\left(\cos\left(\omega t\right)+i\sin\left(\omega t\right)\right) \end{array}$$

$$Q = Ke^{i\sigma_2 t}$$

$$Q = Ke^{i\left(\frac{R}{2L}i - \omega\right)t}$$

$$Q = Ke^{-\frac{R}{2L}t}e^{-i\omega t}$$

$$Q = Ke^{-\frac{R}{2L}t}\left(\cos\left(\omega t\right) - i\sin\left(\omega t\right)\right)$$

The general solution for the homogeneous differential equation can therefore be written as

$$Q = Ae^{-\frac{R}{2L}t} \left(\cos\left(\omega t\right) + i\sin\left(\omega t\right)\right) + Be^{-\frac{R}{2L}t} \left(\cos\left(\omega t\right) - i\sin\left(\omega t\right)\right)$$

$$Q = e^{-\frac{R}{2L}t} \left(A\cos\left(\omega t\right) + Ai\sin\left(\omega t\right)\right) + e^{-\frac{R}{2L}t} \left(B\cos\left(\omega t\right) - Bi\sin\left(\omega t\right)\right)$$

$$Q = e^{-\frac{R}{2L}t} \left(A\cos\left(\omega t\right) + Ai\sin\left(\omega t\right) + B\cos\left(\omega t\right) - Bi\sin\left(\omega t\right)\right)$$

$$Q = e^{-\frac{R}{2L}t} \left((A+B)\cos\left(\omega t\right) + i\left(A-B\right)\sin\left(\omega t\right)\right)$$

or after replacing the factors

$$Q = e^{-\frac{R}{2L}t} \left(K_1 \cos(\omega t) + iK_2 \sin(\omega t) \right)$$

Since the differential equation is linear we can rewrite this as follows

$$Q = e^{-\frac{R}{2L}t} \left(K_1 \cos \left(\omega t \right) + K_2 \sin \left(\omega t \right) \right)$$

or even shorter like so

$$Q = e^{-\frac{R}{2L}t}K\sin(\omega t + \varphi) \tag{5}$$

$$\omega = \sqrt{\omega_0^2 - \rho^2} \tag{6}$$

$$\omega_0^2 = \frac{1}{CL} \tag{7}$$

$$\rho = \frac{R}{2L} \tag{8}$$

$$\rho = \frac{R}{2L} \tag{8}$$

with the two freely choosable constants K und φ . Please note the dependence of the resonance frequency from the resistance.

$$f(R) = \frac{1}{2\pi} \sqrt{-\left(\frac{R}{2L}\right)^2 + \frac{1}{CL}} \tag{9}$$

Figure 1: C=50E-6; L=50E-3

1.2 Finding a particular solution for the inhomogeneous differential equation

We find a particular solution for the inhomogeneous differential equation by trying a suitable approach.

$$Q'' + \frac{R}{L}Q' + \frac{1}{CL}Q = \frac{U_0}{L}\sin\left(\eta t\right)$$

A suitable approach for the above equation is

$$\begin{array}{rcl} Q\left(t\right) & = & De^{i\left(\eta t + \delta\right)} \\ Q'\left(t\right) & = & Di\eta e^{i\left(\eta t + \delta\right)} \\ Q''\left(t\right) & = & -D\eta^2 e^{i\left(\eta t + \delta\right)} \end{array}$$

Substituted into the differential equation we get

$$\begin{split} Q''\left(t\right) + \frac{R}{L}Q'\left(t\right) + \frac{1}{CL}Q\left(t\right) &= \frac{U_0}{L}e^{i\eta t} \\ -D\eta^2 e^{i(\eta t + \delta)} + \frac{R}{L}Di\eta e^{i(\eta t + \delta)} + \frac{1}{CL}De^{i(\eta t + \delta)} &= \frac{U_0}{L}e^{i\eta t} \\ De^{i(\eta t + \delta)}\left(\frac{R}{L}i\eta + \frac{1}{CL} - \eta^2\right) &= \frac{U_0}{L}e^{i\eta t} \\ De^{i\delta}\left(\frac{R}{L}i\eta + \frac{1}{CL} - \eta^2\right) &= \frac{U_0}{L} \end{split}$$

$$De^{i\delta} = \frac{U_0}{L\left(\frac{1}{CL} - \eta^2 + \frac{R}{L}i\eta\right)}$$

$$De^{i\delta} = \frac{U_0\left(\frac{1}{CL} - \eta^2 - \frac{R}{L}i\eta\right)}{L\left(\frac{1}{CL} - \eta^2 + \frac{R}{L}i\eta\right)\left(\frac{1}{CL} - \eta^2 - \frac{R}{L}i\eta\right)}$$

$$De^{i\delta} = \frac{U_0}{L} \frac{\frac{1}{CL} - \eta^2 - \frac{R}{L}i\eta}{\left(\frac{1}{CL} - \eta^2\right)^2 + \left(\frac{R}{L}\eta\right)^2}$$

$$De^{i\delta} = \frac{U_0}{L\left(\left(\frac{1}{CL} - \eta^2\right)^2 + \left(\frac{R}{L}\eta\right)^2\right)} \left(\frac{1}{CL} - \eta^2 - \frac{R}{L}\eta i\right)$$

The value D is the length of the complex number on the right.

$$D = \frac{U_0}{L\left(\left(\frac{1}{CL} - \eta^2\right)^2 + \left(\frac{R}{L}\eta\right)^2\right)} \sqrt{\left(\frac{1}{CL} - \eta^2\right)^2 + \left(\frac{R}{L}\eta\right)^2}$$

$$D = \frac{U_0}{L\sqrt{\left(\frac{1}{CL} - \eta^2\right)^2 + \left(\frac{R}{L}\eta\right)^2}}$$

The angle δ is determined as follows:

$$\tan \delta = \frac{D_I}{D_R}$$
$$\sin \delta = \frac{D_I}{D}$$
$$\cos \delta = \frac{D_R}{D}$$

$$D_{R} = \frac{U_{0} \left(\frac{1}{CL} - \eta^{2}\right)}{L \left(\left(\frac{1}{CL} - \eta^{2}\right)^{2} + \left(\frac{R}{L}\eta\right)^{2}\right)}$$

$$D_{I} = -\frac{U_{0} \left(\frac{R}{L}\eta\right)}{L \left(\left(\frac{1}{CL} - \eta^{2}\right)^{2} + \left(\frac{R}{L}\eta\right)^{2}\right)}$$

$$D = \frac{U_{0}}{L\sqrt{\left(\frac{1}{CL} - \eta^{2}\right)^{2} + \left(\frac{R}{L}\eta\right)^{2}}}$$

$$\tan \delta = -\frac{R\eta}{L\left(\frac{1}{CL} - \eta^2\right)}$$
$$\sin \delta = -\frac{R}{L}\eta$$
$$\cos \delta = \frac{1}{CL} - \eta^2$$

$$Q(t) = D\sin(\eta t + \delta)$$

1.3 Combining the general and the particular solution

We combine the general solution for the homogeneous differential equation

$$Q = e^{-\frac{R}{2L}t}K\sin(\omega t + \varphi)$$

$$\omega = \sqrt{\omega_0^2 - \rho^2}$$

$$\omega_0 = \sqrt{\frac{1}{CL}}$$

$$\rho = \frac{R}{2L}$$

and the particular solution of the inhomogeneous differential equation

$$Q(t) = D\sin(\eta t + \delta)$$

$$D = \frac{U_0}{L\sqrt{\left(\frac{1}{CL} - \eta^2\right)^2 + \left(\frac{R}{L}\eta\right)^2}}$$

$$\tan \delta = -\frac{R\eta}{L\left(\frac{1}{CL} - \eta^2\right)}$$

into a total solution by summation:

$$Q(t) = e^{-\frac{R}{2L}t}K\sin(\omega t + \varphi) + D\sin(\eta t + \delta)$$
(10)

Since the e-Function approaches 0 for large values of t only the particular solution remains after an initiation period.

$$Q(t) = D\sin(\eta t + \delta) \tag{11}$$

We devide by C to get the voltage in the cap, take first derivatives to get the current and take the second derivative to get the voltage over the coil.

$$Q(t) = D \sin(\eta t + \delta)$$

$$Q'(t) = D\eta \cos(\eta t + \delta)$$

$$Q''(t) = -D\eta^2 \sin(\eta t + \delta)$$

$$U_C(t) = \frac{Q(t)}{C}$$

$$U_L(t) = LQ''(t)$$

$$I(t) = Q'(t)$$

$$\delta = \arctan\left(-\frac{R\eta}{L\left(\frac{1}{CL} - \eta^2\right)}\right)$$

Figure 2: C=50E-6; L=100E-3; R=1; U_0=1; η =400; Factor I(t): 10.00

We determine the peak voltage in the cap and the peak current with respect to f (resonance frequency):

$$Q(t) = D\sin(\eta t + \delta)$$

$$U_s(f) = \frac{D}{C}$$

$$U_s(f) = \frac{U_0}{LC\sqrt{\left(\frac{1}{CL} - \eta^2\right)^2 + \left(\frac{R}{L}\eta\right)^2}}$$

$$U_s(f) = \frac{U_0}{LC\sqrt{\left(\frac{1}{CL} - (2\pi f)^2\right)^2 + \left(2\pi f \frac{R}{L}\right)^2}}$$

$$I(t) = D\eta \cos(\eta t + \delta)$$

$$I_s(f) = D\eta$$

$$I_s(f) = \frac{U_0}{L\sqrt{\left(\frac{1}{CL} - \eta^2\right)^2 + \left(\frac{R}{L}\eta\right)^2}}\eta$$

$$I_s(f) = \frac{2\pi f U_0}{L\sqrt{\left(\frac{1}{CL} - (2\pi f)^2\right)^2 + \left(2\pi f \frac{R}{L}\right)^2}}$$

Figure 3: C=50E-6; L=100E-3; R=1; U_0=1; Factor I_s(f): 10.00

If we excite the series tank with its resonance frequency we get high voltages over the components and a very high current only limited by the resistance of the wire.

1.4 Energy Consideration

The power going into the circuit is given by

$$P = \frac{1}{T} \int_{0}^{T} U_{G}(t) I(t) dt$$

$$P = \frac{1}{T} \int_{0}^{T} U_{0} \sin(\eta t) D\eta \cos(\eta t + \delta) dt$$

$$P = \frac{U_{0}D\eta}{T} \int_{0}^{T} \sin(\eta t) \cos(\eta t + \delta) dt$$

$$P = \frac{U_{0}D\eta}{T} \left[-\frac{2\eta t \sin \delta + \cos(2\eta t + \delta)}{4\eta} \right]_{0}^{T}$$

$$P = \frac{U_{0}D\eta}{T} \left(-\frac{2\eta T \sin \delta + \cos(2\eta T + \delta)}{4\eta} - \left(-\frac{\cos \delta}{4\eta} \right) \right)$$

$$P = \frac{U_{0}D\eta}{4T} \left(\cos \delta - 2\eta T \sin \delta - \cos(2\eta T + \delta) \right)$$

$$\eta = \frac{2\pi}{T}$$

$$T = \frac{2\pi}{\eta}$$

$$P = \frac{U_0 D}{4\frac{2\pi}{\eta}} \left(\cos \delta - 2\eta \frac{2\pi}{\eta} \sin \delta - \cos \left(2\eta \frac{2\pi}{\eta} + \delta \right) \right)$$

This gets us the following expression for the input power.

$$P_{in} = \frac{U_0 D\eta}{8\pi} \left(\cos \delta - 4\pi \sin \delta - \cos \left(4\pi + \delta\right)\right) \tag{12}$$

$$\delta = \arctan\left(-\frac{R\eta}{L\left(\frac{1}{CL} - \eta^2\right)}\right) \tag{13}$$

$$\delta = \arctan\left(-\frac{R\eta}{L\left(\frac{1}{CL} - \eta^2\right)}\right)$$

$$D = \frac{U_0}{L\sqrt{\left(\frac{1}{CL} - \eta^2\right)^2 + \left(\frac{R}{L}\eta\right)^2}}$$
(13)

The circulating power in the circuit is defined as

$$P_{circ}(t) = \frac{d(W(t))}{dt}$$

with

$$W(t) = \frac{1}{2}C(U_C(t))^2 + \frac{1}{2}L(I(t))^2$$

$$U_C(t) = \frac{D}{C}\sin(\eta t + \delta)$$

$$I(t) = D\eta\cos(\eta t + \delta)$$

$$\begin{split} P_{circ}(t) &= \frac{d(W(t))}{dt} \\ P_{circ}(t) &= \frac{d\left(\frac{1}{2}C(U_C(t))^2 + \frac{1}{2}L(I(t))^2\right)}{dt} \\ P_{circ}(t) &= \frac{d\left(\frac{1}{2}C\left(\frac{D}{C}\sin\left(\eta t + \delta\right)\right)^2 + \frac{1}{2}L(D\eta\cos\left(\eta t + \delta\right))^2\right)}{dt} \\ P_{circ}(t) &= \frac{1}{2}C\frac{d\left(\left(\frac{D}{C}\sin\left(\eta t + \delta\right)\right)^2\right) + \frac{1}{2}L\frac{d\left(\left(D\eta\cos\left(\eta t + \delta\right)\right)^2\right)}{dt} \\ P_{circ}(t) &= C\frac{D}{C}\left(\eta\frac{dt}{dt} + 0\right)\cos\left(\eta t + \delta\right)\left(\frac{D}{C}\sin\left(\eta t + \delta\right)\right) - LD\eta\left(\eta\frac{dt}{dt} + 0\right)\sin\left(\eta t + \delta\right)\left(D\eta\cos\left(\eta t + \delta\right)\right) \\ P_{circ}(t) &= C\frac{D}{C}\eta\cos\left(\eta t + \delta\right)\frac{D}{C}\sin\left(\eta t + \delta\right) - LD\eta^2\sin\left(\eta t + \delta\right)D\eta\cos\left(\eta t + \delta\right) \\ P_{circ}(t) &= D\eta\cos\left(\eta t + \delta\right)\frac{D}{C}\sin\left(\eta t + \delta\right) - LD\eta^2\sin\left(\eta t + \delta\right)D\eta\cos\left(\eta t + \delta\right) \\ P_{circ}(t) &= D\eta\frac{D}{C}\cos\left(\eta t + \delta\right)\sin\left(\eta t + \delta\right) - LD\eta^2D\eta\sin\left(\eta t + \delta\right)\cos\left(\eta t + \delta\right) \\ P_{circ}(t) &= \left(D\eta\frac{D}{C} - LD\eta^2D\eta\right)\cos\left(\eta t + \delta\right)\sin\left(\eta t + \delta\right) \\ P_{circ}(t) &= D^2\left(\frac{1}{C} - L\eta^2\eta\right)\cos\left(\eta t + \delta\right)\sin\left(\eta t + \delta\right) \\ P_{circ}(t) &= D^2\eta\left(\frac{1}{C} - L\eta^2\right)\cos\left(\eta t + \delta\right)\sin\left(\eta t + \delta\right) \\ P_{circ}(t) &= D^2\eta\left(\frac{1}{C} - L\eta^2\right)\cos\left(\eta t + \delta\right)\sin\left(\eta t + \delta\right) \\ D &= \frac{U_0}{L\sqrt{\left(\frac{1}{CL} - \eta^2\right)^2 + \left(\frac{R}{L}\eta\right)^2}} \\ \delta &= \arctan\left(-\frac{R\eta}{L\left(\frac{L}{CL} - \eta^2\right)}\right) \end{aligned}$$

Figure 4: C=50E-6; L=50E-3; R=0.25; U_0 =12; η =314; Factor P_in: 100.00

We have scaled P_{in} with a factor of 100 in the figure above. The Input power is very small compared to the circulating power for R=0.25Ohm.