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Abstract

Attaching a resistive load directly to a generator coil leads to lugging due to
lenz law. Many ideas have been presented to extract energy from a generator
coil without this lugging effect (non-reflecting to the power source). One is to
attach a cap to the generator coil for the first quarter of the sine wave and
then disconnect the cap from the coil before dumping its charge into a load.
Another suggestion is to dump the charge of the cap into another cap or a
battery (energy reservoir). This paper discusses the second approach and shows
how to avoid/reduce the apparent heat loss during the energy transfer.



Contents

1 Energy transfer from one capacitor to another 1

1.1 Energy Consideration . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Energy transfer from one capacitor to another via a choke 6

2.1 Energy consideration . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 Energy transfer from one capacitor to another

It was suggested to extract power from a generator coil into a fist cap, to dis-
connect this cap from the generator coil and connect it to a second cap, then
disconnect the second cap from the first and pump the charge of the second cap
into a load.

The horizontal resistors represent the wire resistance, the vertical resistor at
the right represents the load. One capacitor would be sufficient to separate a
resistive load from the gen coil. However, one might want to connect a small
HV cap to the gen coil for power extraction and have a bigger LV cap (or a
battery) as an energy reservoir.

We assume a voltage U0 in C1 and no voltage in C2 at t = 0. The switch
between the two caps is closed allowing current to flow from the first to the
second capacitor.

U1 = RI + U2

U0 −
1

C1

∫
I dt = RI +

1

C2

∫
I dt

U0 −RI =

(
1

C1
+

1

C2

)∫
I dt

Q =

∫
I dt

U0 −R
dQ

dt
=

(
1

C1
+

1

C2

)
Q
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R
dQ

dt
+

(
1

C1
+

1

C2

)
Q = U0 (1)

We first solve the homogeneous part of this differential equation with the fol-
lowing approach:

Q (t) = Q0e
kt

Q′ (t) = Q0ke
kt

RQ0ke
kt +

(
1

C1
+

1

C2

)
Q0e

kt = 0(
Rk +

1

C1
+

1

C2

)
Q0e

kt = 0

This is true for all t only if

Rk +
1

C1
+

1

C2
= 0

k = −
1
C1

+ 1
C2

R

k = − 1

R

C1 + C2

C1C2

A solution for the homogeneous differential equation is therefore

Q (t) = Q0e
kt (2)

k = − 1

R

C1 + C2

C1C2
(3)

We find a solution of the inhomogeneous differential equation by varying the
factor.

Q (t) = K (t) ekt (4)

Q′ (t) =
d (K (t))

dt
ekt +K (t) kekt (5)

R
dQ

dt
+

(
1

C1
+

1

C2

)
Q = U0
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R

(
d (K (t))

dt
ekt +K (t) kekt

)
+

(
1

C1
+

1

C2

)
K (t) ekt = U0

R

(
d (K (t))

dt
ekt +K (t) kekt

)
− kRK (t) ekt = U0

R
d (K (t))

dt
ekt +RK (t) kekt − kRK (t) ekt = U0(

d (K (t))

dt
+ kK (t)− kK (t)

)
Rekt = U0

K (t) =
U0

R

∫
e−kt dt

K (t) =
U0

R

∫
e−kt dt

u = −kt
du

dt
= −k

K (t) = −1

k

U0

R

∫
eu du

K (t) = −1

k

U0

R
eu +A

We substitute this result into Eq. 4

Q (t) =

(
−1

k

U0

R
e−kt +A

)
ekt

and thus get the general solution for the inhomogenous differential equation Eq.
1:

Q (t) = Aekt − 1

k

U0

R
(6)

Since U2 = Q/C2 we have

U2 (t) =
1

C2

(
Aekt − 1

k

U0

R

)
If we assume U2 (0) = 0

0 = A− 1

k

U0

R

A =
1

k

U0

R

we get
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U2 (t) =
1

C2

(
1

k

U0

R
ekt − 1

k

U0

R

)
(7)

U2 (t) =
1

k

U0

RC2

(
ekt − 1

)
(8)

We substitute A into Eq. 6 and get

Q (t) =
1

k

U0

R
ekt − 1

k

U0

R
(9)

Q (t) =
1

k

U0

R

(
ekt − 1

)
(10)

We get the current by taking the derivative of Eq. 10:

I (t) =
d (Q (t))

dt
(11)

I (t) =
1

k

U0

R
kekt (12)

I (t) =
U0

R
ekt (13)

The voltage in the source cap is given by

U1 (t) = RI (t) + U2 (t) (14)

U1 (t) = R
U0

R
ekt +

1

C2

1

k

U0

R

(
ekt − 1

)
(15)

U1 (t) = U0e
kt +

1

k

U0

RC2

(
ekt − 1

)
(16)

We plot these three functions.

Figure 1: C1=1; C2=1; R=1; U0=1
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We have

U1 (∞) = −1

k

U0

RC2

U2 (∞) = −1

k

U0

RC2

I (∞) = 0

with

k = − 1

R

C1 + C2

C1C2

1.1 Energy Consideration

The initial energy in the system is given by

Ebefore =
1

2
C1U0

2

The energy after the charge transfer is given by

Eafter =
1

2
C1(U1 (∞))

2
+

1

2
C2(U2 (∞))

2

Eafter =
1

2
C1

(
−1

k

U0

RC2

)2

+
1

2
C2

(
−1

k

U0

RC2

)2

Eafter =
1

2

1

k2

(
U0

RC2

)2

(C1 + C2)

Eafter =
1

2

1(
− 1

R
C1+C2

C1C2

)2( U0

RC2

)2

(C1 + C2)

Eafter =
1

2

R2(
C1+C2

C1C2

)2( U0

RC2

)2

(C1 + C2)

Eafter =
1

2

C1
2C2

2

(C1 + C2)
2

(
U0

C2

)2

(C1 + C2)

Eafter =
1

2

C1
2C2

2

C1 + C2

(
U0

C2

)2

Eafter =
1

2

C1
2

C1 + C2
U0

2

Eafter =
1

2

C1

C1 + C2
C1U0

2

The difference between these two energies is the heat loss.
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Eheat = Ebefore − Eafter

Eheat =
1

2
C1U0

2 − 1

2

C1

C1 + C2
C1U0

2

Eheat =
1

2
C1U0

2

(
1− C1

C1 + C2

)
Eheat = Ebefore

(
1− C1

C1 + C2

)

κ =
Eheat

Eheat
= 1− C1

C1 + C2
(17)

The goal was to pump energy from a small HV cap into a larger LV cap (energy
reservoir). This means we have C1 � C2 and thus κ ≈ 1. Almost the entire
energy is lost in the wire resistance as heat. For C1 = C2 we have κ = 0.5
meaning that half the energy is lost. Note that κ is independent of R so using
thick wire wouldn’t help a bit.

2 Energy transfer from one capacitor to another
via a choke

We have shown in 1 Energy transfer from one capacitor to another that
transfering energy from one cap to another by means of a wire with R>0 causes
an unacceptable heat loss. For two identical caps half of the energy is lost. For
a smaller source cap the outcome is even worse. It is therefore suggested to
introduce a choke into the circuit as shown below.

Once the source cap has reached a low enough potential the coil becomes an
active component and converts its magnetic energy back into current and thus
contributes to the filling of the target cap. The above circuit (switch closed) is
described by the following differential equation.

U1 = L
dI

dt
+RI + U2
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U0 −
Q

C1
= L

dI

dt
+RI +

Q

C2

U0 = L
dI

dt
+RI +

Q

C2
+

Q

C1

U0 = LQ′′ +RQ′ +Q
C1 + C2

C1C2

Q′′ +
R

L
Q′ +Q

1

L

C1 + C2

C1C2
=
U0

L
(18)

We solve the homogeneous differential equation

Q′′ +
R

L
Q′ +Q

1

L

C1 + C2

C1C2
= 0 (19)

first using the following approach:

Q = Q0e
iωt

Q′ = Q0iωe
iωt

Q′′ = −Q0ω
2eiωt

−Q0ω
2eiωt +

R

L
Q0iωe

iωt +Q0e
iωt 1

L

C1 + C2

C1C2
= 0(

−ω2 +
R

L
iω +

1

L

C1 + C2

C1C2

)
Q0e

iωt = 0

This equation is true for all t if we have

−ω2 +
R

L
iω +

1

L

C1 + C2

C1C2
= 0

ω2 − R

L
iω − 1

L

C1 + C2

C1C2
= 0

This equation is solved by

ω1 = −p
2

+

√(p
2

)2
− q

ω2 = −p
2
−
√(p

2

)2
− q

with
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p = −R
L
i

q = − 1

L

C1 + C2

C1C2

We consider ω1 first.

ω1 = −
−R

L

2
i+

√√√√−(−R
L

2

)2

−
(
− 1

L

C1 + C2

C1C2

)

ω1 =
R

2L
i+

√
−
(
R

2L

)2

+
1

L

C1 + C2

C1C2

Q = Q0e
iω1t

Q = Q0e
i

(
R
2L i+

√
−( R

2L )
2
+ 1

L

C1+C2
C1C2

)
t

Q = Q0e

(
− R

2L+i

√
−( R

2L )
2
+ 1

L

C1+C2
C1C2

)
t

Q = Q0e
i

√
1
L

C1+C2
C1C2

−( R
2L )

2
t
e(−

R
2L )t

We can rewrite this as

Q = (A cos (ηt) +B sin (ηt)) e(−
R
2L )t (20)

η =

√
1

L

C1 + C2

C1C2
−
(
R

2L

)2

(21)

We solve the inhomogeneous differential equation by finding a particular solution
K (t) as follows:

K (t) = K0

K ′ (t) = 0

K ′′ (t) = 0

We substitute this as Q into Eq. 18.

Q′′ +
R

L
Q′ +Q

1

L

C1 + C2

C1C2
=
U0

L
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K0
1

L

C1 + C2

C1C2
=

U0

L

K0 = U0
C1C2

C1 + C2

The general solution for Eq. 18 using ω1 is then

Q (t) = (A cos (ηt) +B sin (ηt)) e(−
R
2L )t + U0

C1C2

C1 + C2

We demand Q (0) = 0. This gets us

0 = A+ U0
C1C2

C1 + C2

A = −U0
C1C2

C1 + C2

We further demand I (0) = 0 :

Q (t) = (A cos (ηt) +B sin (ηt)) e(−
R
2L )t + U0

C1C2

C1 + C2

Q′ (t) = (−Aη sin (ηt) +Bη cos (ηt)) e−
R
2L t − (A cos (ηt) +B sin (ηt))

R

2L
e−

R
2L t

0 = Bη −A R

2L

Bη = A
R

2L

B =
1

η

(
−U0

C1C2

C1 + C2

)
R

2L

The special solution for our problem honoring our start conditions is therefore

Q (t) =

((
−U0

C1C2

C1 + C2

)
cos (ηt) +

1

η

(
−U0

C1C2

C1 + C2

)
R

2L
sin (ηt)

)
e(−

R
2L )t + U0

C1C2

C1 + C2

Q (t) = − C1C2

C1 + C2

(
U0 cos (ηt) +

1

η
U0

R

2L
sin (ηt)

)
e−

R
2L t + U0

C1C2

C1 + C2

Q (t) = −U0
C1C2

C1 + C2

(
cos (ηt) +

1

η

R

2L
sin (ηt)

)
e−

R
2L t + U0

C1C2

C1 + C2

Q (t) = U0
C1C2

C1 + C2

(
1−

(
cos (ηt) +

1

η

R

2L
sin (ηt)

)
e−

R
2L t

)
(22)

The voltage in the target cap is given by
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U2 (t) =
Q (t)

C2

U2 (t) = U0
C1

C1 + C2

(
1−

(
cos (ηt) +

1

η

R

2L
sin (ηt)

)
e−

R
2L t

)
The current is given by

I (t) =
dQ

dt

I (t) = −U0
C1C2

C1 + C2

((
−η sin (ηt) +

1

η

R

2L
η cos (ηt)

)
e−

R
2L t −

(
cos (ηt) +

1

η

R

2L
sin (ηt)

)
R

2L
e−

R
2L t

)
I (t) = −U0

C1C2

C1 + C2
e−

R
2L t

(
−η sin (ηt) +

R

2L
cos (ηt)−

(
cos (ηt) +

1

η

R

2L
sin (ηt)

)
R

2L

)
I (t) = −U0

C1C2

C1 + C2
e−

R
2L t

(
−η sin (ηt) +

R

2L
cos (ηt)−

(
R

2L
cos (ηt) +

1

η

(
R

2L

)2

sin (ηt)

))

I (t) = −U0
C1C2

C1 + C2
e−

R
2L t

(
−η sin (ηt) +

R

2L
cos (ηt)− R

2L
cos (ηt)− 1

η

(
R

2L

)2

sin (ηt)

)

I (t) = U0
C1C2

C1 + C2
e−

R
2L t

(
η sin (ηt) +

1

η

(
R

2L

)2

sin (ηt)

)

I (t) = U0
C1C2

C1 + C2
e−

R
2L t

(
η +

1

η

(
R

2L

)2
)

sin (ηt)

The voltage in the source cap is given by

U1 (t) = LI ′ (t) +RI (t) + U2 (t) (23)

with

I ′ (t) = U0
C1C2

C1 + C2

(
− R

2L
e−

R
2L t

(
η +

1

η

(
R

2L

)2
)

sin (ηt) + e−
R
2L t

(
η +

1

η

(
R

2L

)2
)
η cos (ηt)

)

I ′ (t) = U0
C1C2

C1 + C2
e−

R
2L t

(
η +

1

η

(
R

2L

)2
)(
− R

2L
sin (ηt) + η cos (ηt)

)
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Figure 2: C1=1; C2=1; L=1; R=0.5; U0=1

The different outcome is obvious and this time highly dependent on the size of
the wire resistance R.

2.1 Energy consideration

The energy in C1 at t = 0 is given by

Ebefore (t) =
1

2
C1U0

2

The energy in target cap after time t is given by

Eafter (t) =
1

2
C2(U2 (t))

2

The following figure shows the development of Eafter (energy in C2) in relation
to the initial input energy Ebefore.
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Figure 3: C1=1; C2=1; L=1; R=0.2; U0=1; Factor E b(t): 2.00; Factor E a(t):
2.00

There is a point with maximal current in the choke. The voltage potential
between C1 and C2 plus the voltage drop over R has dropped to zero and the
choke starts to discharge its magentic energy into the target cap. The heat loss
is minimal inspite of a significant wire resistance in this example. We create a
new plot with more likely values for the components.

Figure 4: C1=2E-6; C2=5E-6; L=50E-3; R=0.2; U0=1; Factor E a(t): 1.0E+06;
Factor E b(t): 1.0E+06; Factor I(t): 100.00

Our circuit equations do not honor the diode that suppresses oscillations and
prevents C1 from being charged negatively. The energy of the coil would mainly
go into C2 where it belongs with the diode in place. We can conclude that
the choke approach transfers almost 100% of the energy in C1 to C2 with no
apparent heat loss. In a real application the inductivity should be chosen as
small as possible to ensure fast enough energy transfer from left to right but
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large enough to prevent significant voltage drops over the wire.

Figure 5: C1=2E-6; C2=5E-6; L=10E-3; R=0.2; U0=1; Factor I(t): 100.00;
Factor E b(t): 1.0E+06; Factor E a(t): 1.0E+06

Figure 6: C1=2E-6; C2=5E-6; L=1E-3; R=0.2; U0=1; Factor I(t): 20.00; Factor
E b(t): 1.0E+06; Factor E a(t): 1.0E+06
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Figure 7: C1=1000E-6; C2=1000E-6; L=3.4E-3; R=0.2; U0=12; Factor E a(t):
150.00; Factor E b(t): 150.00; Factor I(t): 2.00
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